東京工科大学 応用生物学部 多田研究室

論文

【査読あり Reviewed】

48) Takagi K, Yokoyama M, Beppu T, Uemori H, Ohno H, Murakami T, Ifuku O, Tada Y, Yoshida S (2024) High productivity of oxylipin KODA using E. coli with lipoxygenase and allene oxide synthase of Lemna paucicostata introduced. Plant Biotechnol. Oct 12, 2024 doi.org/10.5511/plantbiotechnology.24.0721a

47) Yokoyama M, Kaida R, Miyamoto K, Tada Y, Fujii Y (2024) Characteristics of the systemic activation of the growth by 9,10-ketol-12(Z),15(Z)-octadecadienoic acid (KODA) in Populus alba cultured in vitro. Plant Biotechnol. Oct 12, 2024 doi.org/10.5511/plantbiotechnology.24.0721b

46) Tada Y, Kochiya R, Toyoizumi M, Takano Y (2023) Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress. Plant Biotechnol. 40: 301–309, DOI: https://doi.org/10.5511/plantbiotechnology.23.0721a

45) Noike Y, Okamoto I, Tada Y (2023) Root epidermis-specific expression of a phosphate transporter TaPT2 enhances the growth of transgenic Arabidopsis under Pi-replete and Pi-depleted conditions. Plant Sci. 327: 111540, https://doi.org/10.1016/j.plantsci.2022.111540

44) Kato Y, Tada Y (2021) Comparative analysis of various root active promoters by evaluation of GUS expression in transgenic Arabidopsis. Plant Biotechnol 38: 443-448; https://doi.org/10.5511/plantbiotechnology.21.1011a

43) Kawakami Y, Imran S, Katsuhara M, Tada Y (2020)  Na+ Transporter SvHKT1;1 from a Halophytic Turf Grass Is Specifically Upregulated by High Na+ Concentration and Regulates Shoot Na+ Concentration (2020) Int J Mol Sci 21: 6100; https://doi.org/10.3390/ijms21176100 [IF:4.556/2019]

42) Tada Y, Ohnuma A (2020) Comparative Functional Analysis of Class II Potassium Transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on Ionic Transport and Salt Tolerance in Transgenic Arabidopsis. Plants  9: 786. https://doi.org/10.3390/plants9060786

41) Tada Y (2019) The HKT transporter gene from Arabidopsis, AtHKT1;1, is dominantly expressed in shoot vascular tissue and root tips and is mild salt stress-responsive. Plants 8: 204; https://doi.org/10.3390/plants8070204, [IF 2.632/2018]

40) Tada Y, Kawano R, Komatsubara S, Nishimura H, Katsuhara M, Ozaki O, Terashima S, Yano K, Endo C, Sato M, Okamoto M, Sawada Y, Yokota-Hirai M, Kurusu T (2019) Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Plant Sci 278: 54-63; https://doi.org/10.1016/j.plantsci.2018.10.019

39) Tada Y, Endo C, Katsuhara M, Horie T, Shibasaka M, Nakahara Y, Kurusu T (2019) High-affinity K+ transporters from a halophyte, Sporobolus virginicus, mediate both K+ and Na+ transport in transgenic Arabidopsis, X. laevis oocytes, and yeast. Plant Cell Physiol 60:176–187, https://doi.org/10.1093/pcp/pcy202

38) Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y (2019) Transcriptomic analysis of Aegilops tauschii during long term salinity stress. Funct. Integr. Genomics 19: 13;  doi.org/10.1007/s10142-018-0623-y
 

37) Yamamoto N, Garcia R, Suzuki T, Solis CA, Tada Y, Venuprasad R, Kohli A(2018)Comparative whole genome re-sequencing analysis in upland New Rice for Africa: insights into the breeding history and respective genome compositions. Rice 11:33; doi.org/10.1186/s12284-018-0224-3 (0)

36) Endo C, Yamamoto N, Kobayashi M, Nakamura Y, Yokoyama Y, Kurusu T, Yano K, Tada Y (2017) Development of simple sequence repeat markers in the halophytic turf grass Sporobolus virginicus and transferable genotyping across multiple grass genera/species/genotypes Euphytica 213:56; DOI: 10.1007/s10681-017-1846-

35) Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci. 6:427. doi: 10.3389/fpls.2015.00427

34) Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y (2015) Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front. Plant Sci. 6:Article 241, doi: 10.3389/fpls.2015.00241 

33) Tada Y, Komatsubara S, Kurusu T (2014) Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. AoB PLANTS6: plu041; doi: 10.1093/aobpla/plu041

32) Kazama D, Kurusu T, Mitsuda N, Ohme-Takagi M, Tada Y (2014) Involvement of elevated proline accumulation in enhanced osmotic stress tolerance in Arabidopsis conferred by chimeric repressor gene silencing technology. Plant Signal. Behav. 9: e28211; http://dx.doi.org/10.4161/psb.28211  Abstract

31) Kazama D, Itakura M, Kurusu T, Mitsuda N, Ohme-Takagi M, Tada Y (2013) Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis. Plants. 2(4):769-785. doi:10.3390/plants2040769 

30) 多田 雄一, 田代 崇郎, 坪井 聡史 (2013) クズを利用した屋上緑化による熱環境改善効果について 日本ヒートアイランド学会論文集 8: 39-44

29) Tada Y, Kizu Y (2011) Glutathione-dependent formaldehyde dehydrogenase from golden pothos (Epipremnum aureum) and the production of formaldehyde detoxifying plants. Plant Biotechnol. 28: 373-378 

28) Miyama M, Tada Y (2011) Expression of Bruguiera gymnorhiza BgARP1 enhances salt tolerance in transgenic Arabidopsis plants. Euphytica 177:383-392, DOI 10.1007/s10681-010-0264-2 Abstract

27)Tada Y, Matsuzaki T, Tanaka Y (2010) Isolation and characterization of formaldehyde-responsive genes from golden pothos (Epipremnum aureum). Plant Biotechnol. 27: 325-331

26) 松本恵子、多田雄一、清水浩、澁澤栄 (2009) カイワレダイコン(Raphanus sativus L. “Kaiwaredaikon (Japanese radish sprout)”)の生育および抗酸化活性に与える光強度の影響 植物環境工学 21:117-122

25) 松本恵子、多田雄一、清水浩、澁澤栄 (2009) カイワレダイコン(Raphanus sativus L. “Kaiwaredaikon (Japanese radish sprout)”)の生育および抗酸化活性に与える給水量の影響 植物環境工学 21:79-85

24) Tada Y, Kashimura, T (2009) Proteomic analysis of salt-responsive proteins in mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol. 50: 439-446, DOI: 10.1093/pcp/pcp002 Abstract

23) 松本恵子、多田雄一、清水浩、澁澤栄 (2009) カイワレダイコン(Raphanus sativus L. “Kaiwaredaikon (Japanese radish sprout)”)の生育および抗酸化活性に与える気温の影響 植物環境工学21:29-34

22) Yamanaka T, Miyama M, Tada Y (2009) Transcriptome profiling of the mangrove plant Bruguiera Gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening. Biosci. Biotechnol. Biochem. 73:304-310, DOI: 10.1271/bbb.80513

21) Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorhiza using Agrobacterium functional screening. Plant Sci.176: 272-278, DOI: 10.1016/j.plantsci.2008.11.005 Abstract

20) Kotsuka K, Tada Y (2008) Genetic Transformation of Golden Pothos (Epipremnum aureum) mediated by Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 95:305-311, DOI: 10.1007/s11240-008-9444-3 Abstract

19) Miyama M, Tada Y (2008) Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Plant Mol. Biol. 68:119-129, DOI: 10.1007/s11103-008-9356-y Abstract 

18) Tada Y (2007) Effects of Rf-1, Rf-3 and Rf-6(t) on Fertility Restoration in Rice (Oryza sativa L.) with WA- and BT-type Cytoplasmic Male Sterility. Breed. Sci. 57:223-229 

17) Tada Y, Akagi H, Fujimura T, Matsuda T (2003) Effect of an antisense sequence on rice allergen genes comprising a multi gene family. Breed. Sci. 53:61-67 

16) Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CW, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell. 14:619-28 

15) Tada Y(1999) PCR-amplified resistance gene analogs link to resistance loci in rice. Breed. Sci. 49:267-273 

14) Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hayashi N, Fujimura T, Ichikawa N(1999) Chemical induction of disease resistance in rice is associated with the expression of a gene encording a nucleotide binding site and leucine-rich repeats. Plant Mol. Biol. 40:847-855

13) 多田雄一、原田二郎、松村 雄、山田 実、松田 幹、安達貴弘、中村 良、高橋正昌、藤村達人、島田浩章 (1997) 16kDaアルブミンに対するアンチセンス遺伝子を導入した組換えイネの環境に対する安全性評価(II)育種学雑誌47:77-81

12) 多田雄一、山田 実、澤田倫平、佐本四郎、松田 幹、安達貴弘、中村 良、高橋正昌、藤村達人、島田浩章 (1997) 16kDaアルブミンに対するアンチセンス遺伝子を導入した組換えイネの環境に対する安全性評価(I)育種学雑誌46:403-407

11) Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T, Matsuda T.(1996) Reduction of 14-16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett. 391:341-345 

10) Matsuoka M, Tamaoki M, Tada Y, Fujimura T, Tagiri A, Yamamoto N,. Kanno-Murakami Y (1995) Expression of rice OSH1 gene is localized in developing vascular strands and its ectopic expression in transgenic rice causes altered morphology of leaf. Plant Cell. Rep. 14:555-559

9) Yamamoto N, Tada Y, Fujimura T (1994) The promoter of a pine photosynthetic gene allows expression of a β-glucronidase reporter gene in transgenic rice plants in a light-independent but tissue-specific manner. Plant Cell Physiol. 35:773-778

8) Shimada H, Tada Y, Kawasaki T, Fujimura T (1993) Antisense regulation of the rice waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theor.Appl.Genet. 86:665-672

7) Matsuoka M, Tada Y, Fujimura T, Kanno-Murakami. Y (1993) Tissue-specific light-regulated expression directed by the promoter of a C4 gene, maize pyruvate, orthophosphate dikinase, in a C3 plant, rice. Proc.Natl.Acad. Sci.USA 90:9586-9590

6) Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T Kanno-Murakami. Y (1993) Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5:1039-1048

5) Shimada H, Tada Y (1991) Rapid isolation of rice waxy sequence: a simple PCR method for the analysis of recombinant plasmids from intact Escherichia coli cells. Gene 98, 243-248

4) Kato T, Shirano Y, Kawazu T, Tada Y, Itoh E, Shibata D (1991) A modified beta-glucronidase gene: sensitive detection of plant promoter activities in suspension-cultured cell of tobacco and rice. Plant Mol. Biol. Rep. 9, 333-339

3)Tada Y, Sakamoto M, Matsuoka M, Fujimura T (1991) Efficient transformation of rice cells and production of transgenic rice plants. In Rice Genetics II. Proc 2nd Int. Rice Genet. Symp., edited by. IRRI, Manila, pp.575-583

2) Tada Y, Sakamoto M, Matsuoka M, Fujimura T (1991) Expression of a monocot LHCP promoter in transgenic rice. EMBO J. 10, 1803-1808 

1) Tada Y, Sakamoto M, Fujimura T (1990) Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor. Appl. Genet. 80:475-480

【査読なし Non-reviewed】

7) 多田雄一,山中拓哉, 深山真史 (2008) 塩処理したマングローブ(オヒルギ)の遺伝子発現プロファイリングと耐塩性遺伝子の同定 東京工科大研究報告3:77-84

6) Tada Y (2005) Fertility restoration in rice with WA- and BT-type cytoplasmic male sterility crossed with near isogenic lines deferring at Rf loci. Proceedings of the 10th International Congress of the Society for the Advancement of Breeding Researches in Asia and Oceania, D-15

5) Tada Y (1996) Modification of rice grain components by recombinant DNA technology. Gamma Field Symposia 35:5-17

4) Matsuda T, Nakase M, Adachi T, Nakamura R,Tada Y, Shimada H, Takahashi M and Fujimura T (1996) Allergenic Proteins in rice: Strategies for reduction and evaluation. In : G. Elisenbrand et al. (eds.) Food Allergies and intolerances,  Section III. The input of molecular biology: Transgenic foods. VCH verlagsgesellschaft, Weinheim, FRG, pp161-169

3) Tada Y, Shimada H, Fujimura T (1995) Reduction of allergenic protein in rice grain. In: D.D. Jones (ed.) The biosafety results of field test of genetically modified plants and microorganisms, Univ. of California, U.S.A. pp.290

2) Tada Y, Adachi T, Matsuda T, Takahashi M, Fujimura T, Nakamura R,.Shimada H (1995) Reduction of allergenic proteins in transgenic rice by antisense strategy. In: K. Oono, F. Takaiwa (eds.), Modification of gene expression and non-menderian inheritance. Natl. Inst. Agrobiol. Resources, Japan, pp. 313-324

1) Shimada H, Kawasaki T, Ishikawa M, Okumura S, Baba T, Tada Y, Hayashida N, Shinozaki K: Molecular analysis of genes involved in rice grain starch synthesis: Structure of a seed-development specific protein kinase. In: N. Murata (ed.) Research in photosynthesis. Kluwer Academic Publ., The Netherlands, vol. III, pp923-926 (1992)

PAGETOP
Powered by WordPress & BizVektor Theme by Vektor,Inc. technology.